Minimum Gene Selection using BSWFM
نویسندگان
چکیده
منابع مشابه
Robust and stable gene selection via Maximum-Minimum Correntropy Criterion.
One of the central challenges in cancer research is identifying significant genes among thousands of others on a microarray. Since preventing outbreak and progression of cancer is the ultimate goal in bioinformatics and computational biology, detection of genes that are most involved is vital and crucial. In this article, we propose a Maximum-Minimum Correntropy Criterion (MMCC) approach for se...
متن کاملMinimum Redundancy Feature Selection for Microarray Gene Expression Data
Selecting a small subset of genes out of the thousands of genes in microarray data is important for accurate classification of phenotypes. Widely used methods typically rank genes according to their differential expressions among phenotypes and pick the top-ranked genes. We observe that feature sets so obtained have certain redundancy and study methods to minimize it. Feature sets obtained thro...
متن کاملMinimum Redundancy Feature Selection from Microarray Gene Expression Data
How to selecting a small subset out of the thousands of genes in microarray data is important for accurate classification of phenotypes. Widely used methods typically rank genes according to their differential expressions among phenotypes and pick the top-ranked genes. We observe that feature sets so obtained have certain redundancy and study methods to minimize it. We propose a minimum redunda...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملGene Selection Using GeneSelectMMD
This document demonstrates how to use the GeneSelectMMD package to detect significant genes and to estimate false discovery rate (FDR), false non-discovery rate (FNDR), false positive rate (FPR), and false negative rate (FNR), for a real microarray data set based on the method proposed by Qiu et al. (2008). It also illustrates how to visualize the fit of the model proposed in Qiu et al. (2008) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2015
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2015/v8i26/80982